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SPECTRAL DECOMPOSITION OF GREEN'S TENSOR OF THE DYNAMIC PROBLEM OF THE 

THEORY OF ELASTICITY IN CYLINDRICAL COORDINATES* 

K.A. CHISHKO 

The equation of motion of an elastic medium can be written in curvilinearcoordinates 

Formulas are obtained for Green's function of the dynamic problem of the 
theory of elasticity in an unbounded isotropic medium describing, in 
cylindrical coordinates R,q and 2, the Fourier transforms of this 
function in t, and in coordinates 'p and z. The dependence on R is 
retained in explicit form and this makes it possible to use the results 
obtained to solve boundary-value problems in circular cylindrical 
coordinates. A special case of the spectral components of the field of 
displacement rates of the points of the medium and of the stress field of 

the system of dislocation loops moving in arbitrary manner, are 
discussed. 

in covariant form /l/ 
(pguba2/at2-h=RvbVgVv)U6 = f” (1) 

where ncf (Y, t) is the displacement field of the points of the medium in the system of 
generalized coordinates {p} at the instant of time t; f”(y,t) is the volume force density, 
p is the density of the medium, p@ is the metric covariant tensor /2/, Va is the covariant 
tensor derivative /l, 2/ and hW?b is the quadruply contravariant tensor of the elastic moduli 

of the medium /l, 3/. In the case of an isotropic medium, to which we shall confine the 
present discussion, to this tensor will have the form /l/ 

(Cl and ct denote the 
Let us introduce 

equation 

where 9, = A,& (A, 

].Wb = p (cl2 - 2rf2) g=Pgvb + pct2 (gwgPb +mgabgRv) (2) 

longitudinal and transverse speeds of sound). 
the twice-covariant Green's tensor G!$ (y, y'; t - t’) satisfying the 

(pg”W/at2- hWbV,V,)Ge = Q?6;6(Y-Y')6(t-t') (3) 

are the Lame parameters), and Gdrx is the Kronecker delta. After this 

we can write the solution of Eq.(l) in the form /4, 5/ 

(4) 

Here dQ is the volume element in y-space, and 

rap (y, ).‘; t -t’) = G(O) (v al-1 .,y’;t-t’)P$(yIy’) (5) 

is Green's function of the dynamic problem of the theory of elasticity in an unbounded medium 
in coordinates {yz}, where Ppp(y 1 y') is the projection operator mapping the components of 
the vector defined in the basis ep (y) at the point y, into the basis e$ (y') at the point 

Y'. For a Cartesian system of coordinates Ptiv = 6,3v and in curvilinear coordinates, 

Pau (v 1 y’) = ..+ 2!L_ 
8y’B (6) 

where r and r' are the Cartesian radius vectors of the points at which the corresponding 

bases are constructed /l/. From (6) we obtain the obvious relation Pa8 (y 1 Y) = &B (Y). 
In view of the representation (5), we must provide the following explanation. Green's 

function expresses the law of congruence between the vector quantities referred to the points 
of the space with different bases. Therefore, if we use, for example, the function c(0) 

as1 

whose components are defined in the basis e, (Y), then, before calculating its convolution 
with the force ffi(y'),which has components in the basis e,(y'), the latter must be projected 
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onto the basis e,(y) (otherwise the contraction operation will lose its meaning). Thus we 
arrive, once again, at relations (4) and (5), and ITab can conveniently be regarded as 
Green's function, since unlike G(o) aH, it satisfies the following reciprocity relations /4, 5/ 

in explicit form: 

rap (y, y'; t- t') = r,,(y', y: t'--t). 

Here the function rab satisfies, naturally, relations 
confirmed by taking into account the fact that the projector 
tensor gab , under differentiation, as a constant 

V,P,B = aP,@P- P&& = 0 

VV'P,B = aP,*/ay’v - PcJ;v = 0 

(7) 

(3). The latter can be easily 
P a~ behaves, just as the metric 

where I?& are Christoffel symbols /l, 2/ and the symbols 8, and V,' denote differentiation 

with respect to y and y'. We note that the projector P,B differentiates not as a covariant 
tensor of second rank, but as a set of covariant (basis)vectors, and this is obvious from 
its definition (6). 

We know /6, 71 that the function G:d can be written as 

G$(y,y’;t-t’)=L,$J(Iy-y’j,t-t’) 

Lap = -P ((Cl2 - ct”) VCL~P + Ol&P) 
q h = a=/at2 - chzv,~y k = E, t 

is) 
(9) 

The potential U satisfies the equation /7/ 

p?rJIrJtu(Iy-Y’/;t-t’)=Q;‘6(y-yy’)6(t-tt’) 

The solution of Eq.(lO) has the form /0/ 

(10) 

U(y,t)=A r,(-)(&$jqh+j 
?.A. t 

where A = 14spa (cl* - ct2)1-', 8 (t) is the Heaviside step function and the minus sign on the 
summation symbol means that we take the difference between the terms with h = 1 and h = t. 
It is clear that the spectral expansion, which is of interest, can be conveniently carried 
out starting from relation (81, since the scalar potential (11) is invariant under any 
orthogonal coordinate transformation, and the transformation of the differential operator (9) 
in each specific case presents no fundamental difficulties. 

All this makes the treatment of the problem in its general form more difficult. In what 
follows, we shall transfer to the special case of a cylindrical system of coordinates 
and 2. Here we have (y - y' ) = [Ra + R’a - 2RR’ cos (QI - $)I”. 

R,cp 
, and the physical components of 

the projection operator are: 

n 

cos(‘p-c+I’) sin(cp-r$) 0 
- 
Pc#(cp-m') = -sin(cp-q') cos(cp-go') 0 

0 0 1 
(12) 

(here and henceforth a prime on a vector and tensor denotes the physical component of the 
object in question). The physical components of the differential operator Lab have the form 

(13) 

1 aa -- 
R aqa2 

a= 
ala 

The spectral expansion of the physical components of Green's function 

Iiag(R,R’,cp-cp’,z;t)=(2n)+ 2 s do s ~~,~B(R~R’I~~~~)X 
m=-m-c.3 -co 

exp [i(u-kk,z)] 

(14) 
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can be obtained from the definition (5), taking relations (8) and (9) into account. The 
Fourier transforms gOfI?, R Im, kJ can be expressed, taking into account expression (0), in 
terms of the Fourier transform U*(&, R' /m, k,) of the potential u: 

where the Fourier transform of the operator z,, has the form 

We can construct the Fourier transform of the potential UU(R, R' /m,k:) in several 
obvious ways. The simplest method consists of changing, in the known Fourier expansion 18/ 

u” (z, y /k,) = -A 
exp [- i (kr3 + $Y)l dk dk 

k,= -I- kus + qAa ’ ’ 

qi = (kzZ - 02,en2)1” 

to cylindrical coordinates I = Rcoscp, y = & sin rp, and converting the expansion 
Fourier series in cp. As a result, using the well-known integral representation 
theorems for Bessel functions 19, lo/, we obtain 

Here 

u,,(x)@ (R, R’ I .%) = 1, CM) K, CqiR’) 63 (R’ - R) -‘r 
1, hW 4, h.R) Q CR - W 

(17) 

(17) into a 
and addition 

(18) 

(19) 

where 1, (E) and K,(E) are modified Bessel functions of order n, of the first and second 
kind respectively. Substituting expression (19) into (15) and reducing the expression 
obtained, we finally have 

where 

+$P (R, R' 1 m, k;) = [2npoy-’ bee @) (R / m, kz) b$’ (R’ 1 m, k,) f3 {R - R’) + (21) 

bfJ(” (R 1 m, k,) aF’“‘(R’ 1 m, k,) 0 (R’ - R) f + 2_ y2-:fz A&?$ (R, R’lm, k,)] 

The vectors a(r) and b(") have the form 

aW(EIm,kz)= --&,-~,~ 
-t I h’nl bid) 

b@)(Ejm,k,)= a m { + ae’--x-‘:! > InI (4hE) 

and an asterisk denotes their complex conjugates. The diagonal matrix has the following 
components: 
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It can be confirmed that the Fourier transforms (21) satisfy the reciprocity relations 
7). 

The Fourier transforms of the physical components of the displacement field defined by 
Eq.(l) can be written with the help of relation (20), and we then have 

In the case when the fields are created in the medium by a system of dislocation loops, 
the tensor components of the force fpe (R, cp, z, t) are /ll/: 

n,(R, 9, z,t) = (~Jc)-~ f do f dkz exp[i(wt -kzz)] ,x 
-m -03 

f dR’ R’ ,5j j$fi (RR’ / m, k,) ffis” (R’ 1 m, kz) 
m=-.?a 

(22) 

where iv,. (Y, t) is the dislocation flux density tensor /ll, 12/. The spectral expansion of 
the physical components of the vector (23), taking Eq.(2) into account, has the form 

fRO(RIm,k,) = %((-$--I)-&-%+ 

-GT + A) $& + $f- i”q - ikzTgf 

f,“(RIm,k,)= $$-{($+---I)$!.-i”w+ 

!$- + $+i& f +i$- ik$} 

fp(R]m,k,) = s{-ik 10 .(+l)i”w+&ik”.+~~-ikJ~~ 

Here f_, = fRR + frpro + f,, is the trace of the tensor ?=7as (II, P, z, 1) and $$(R[m, k,)= 

f (Cu -I- i%) are Fourier transforms of the physical components of the symmetric part of this 

tensor. Fox the filed of displacement rates of the points of the medium 5&== +a, the 

transforms are: Fa* (B J m, kJ= iolz,o (h’ ] m, kz). Fourier transforms of the stress field are 
obtained from Hooke's law for a medium with dislocations 111, 121 

When faa = 0, the above relation yields the well-known relation between the stresses 
and strains for a defect-free medium. These are given, for example, in the coordinate 
representation for the case of cylindrical coordinates in /l, ll/. The change to Fourier 
transforms in these expressions is made by formal replacement of the differentiation operators 
aiatf -+ im, alas-+. ik,. The obvious formulas for the transforms of the stress field of the 
type (22) are very bulky and are therefore not given here. 
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A LINEAR THEORY OF DOUBLE-LAYER RESIN-METAL SHELLS* 

N.N. ROGACHEVA 

An asymptotic method is used to derive two-dimensional equations of 
double-layer shells of arbitrary form. The problem is split into two, 
simpler problems. A solution for a weak layer of slightly compressible 
elastic material,. such as an elastomer, is obtained in general form and 
the solution for a two-layer shell reduces, as a result, to solving the 
problem of a stiff layer under a load which depends on the stress-strain 
state (SDS) of the weak layer. It is shown that in the case of a weak 
layer the laws of variation of the quantities required across the 
thickness may deviate significantly, depending on the dynamic properties 
of the load, from the laws accepted in the classical theory of shells. 

The papers dealing with the problem in question concern themselves, as a rule, with the 
analysis of the equations of state /l, 2/, or with the study of SDS under kinematic-type 
conditions on the face surfaces of the shell, making certain assumptions /3[. 

1. We shall assume, to fix our ideas, that the outer layer of the shell, of thickness 

W, is composed of an incompressible elastic elastomer (we shall call it the soft layer), 
and an inner, metal layer of thickness 2h, (we shall call it the stiff layer). The face 
surfaces of the two-layer shell are subjected to an arbitrary, static or dynamic load. 

We will write the initial conditions for the elastomer layer in three-orthogonal coor- 
dinates cl, %r o3 where cl) aa are the lines of curvature of the middle surface of the 
layer and cza is a line orthogonal to them 

Here (1.1) is the equation of state, (1.2) is the condition of incompressibility, (1.3) 
are the equations of motion, and 


